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FOREWORD

NASA experience has indicated a need for uniform criteria for the design of space

vehicles. Accordingly, criteria are being developed in tile following areas of technology:

Environment

Structures

Guidance and Control

Chemical Propulsion.

Individual components of this work will be issued as separate monographs as soon as

they are completed. A list of all previously issued monographs in this series can be

found at the end of this document.

These monographs are to be regarded as guides to design and not as NASA

requirements, except as may be specified in formal project specifications. It is

expected, however, that the criteria sections of these documents, revised as experience

may indicate to be desirable, eventually will become tmiform design requirements for

NASA space vehicles.

This monograph was prepared under the cognizance of the Langley Research ('enter.

The Task Manager was A. L. Braslow. The authors were V. I. Weingarten and P. Seide

of the University of Southern California. A number of other individuals assisted in

developing the material and reviewing the drafts. In particular, the significant

contributions made by B.O. Ahnroth of Lockheed Missiles & Space Company,

E. tt. Baker of California Polytechnic Institute, 1).O. Brush of the University of

California at Davis, R. F. Crawford of Astro-Research Corporation, G. A. Greenbaum

of TRW Systems, R. E. tlubka of Lockheed-California Company, R. R. Meyer of

McDonnell Douglas Corporation, M.D. Musgrove of The Boeing Company,

J.P. Peterson of NASA Langley Research Center, and G.A. Thurston of Martin

Marietta Corporation are hereby acknowledged.

('omments concerning the technical content of these monographs will be welcomed by

the National Aeronautics and Space Administration, Office of Advanced Research and

Technology {('ode RVA), Washington, D.('. 20546.
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BUCKLING OF THIN-WALLED
DOUBLY CURVED SHELLS

1. INTRODUCTION

Doubly curved shells are frequently used as walls of space vehicles and as external

closures or internal common bulkheads in fuel tanks. When doubly curved shells

develop compressive membrane forces in reaction to externally applied loads, their

load-carrying capacity is often limited by structural instability, or buckling. In many

cases, this capacity or buckling strength of a shell is reached when slight increases in

the external loading produce large and abrupt changes or buckles in the surface

geometry of the shell. For shells which do not fail catastrophically, a further increase

in the external loading will gradually produce amplification of buckles, accompanied

by plastic deformation that eventually results in collapse of the structure.

The buckling strength of a doubly curved shell depends upon its curvature, its

geometric proportions (including the stiffening, when present), the elastic properties of

its materials, the manner in which its edges are supported, and the nature of the

applied loading. Initial, although small, geometric deviations of the shell from its ideal

shape can have a significant adverse effect on the buckling strength of doubly curved

shells, and can cause large scatter of experimental results.

This monograph presents criteria and recommends practices for design of

compressively loaded doubly curved shells. Data are given for shells of revolution,

including complete spheres, ellipsoids, and toroids, as well as for bulkheads. Most of

the data are for shells subjected to uniform pressure loads, although data are also given

for point loads on spheres.

The reduction of critical buckling loads caused by imperfections, small dynamic

oscillations, boundary conditions, and the like is usually accounted for by multiplying

the theoretical buckling loads by a correlation factor to obtain a lower-bound

conservative estimate. However, when insufficient data are available to obtain

correlation factors, testing is recommended to verify the design. Experimental

verification is also recommended for shells of arbitrary shape and for shells of

revolution having cutouts, joints, plasticity effects, and nonuniform shell stiffness. The

effect of small oscillations in applied loading is considered to be accounted for by the
correlation factor.



Relatedsubjectsincludebucklingof circularcylindricalshells(ref.-1)andbucklingof
truncatedconicalshells(ref. 2), aswellasbucklingstrengthof structural plates, which

is to be treated in a planned NASA monograph. An ultimate design factor is used in

estimating design loads for buckling. Considerations involved in selecting the numerical

value of this factor are to be presented in another planned NASA monograph.

2. STATE OF THE ART

The buckling strength of shells is usually determined by combining theoretical

predictions with experimentally determined correlation factors. For doubly curved
shells, considerable capability for theoretical analysis is available. Experimental

investigations of the stability of doubly curved shells, however, lag far behind

analytical capabilities; the shallow spherical cap under external pressure is the only

problem which has been investigated extensively.

Eccentricity effects (i.e., "onesidedness") of stiffened shells cannot usually be

neglected in buckling investigations. When eccentricity is included, significant
differences can be obtained in buckling loads for some shell geometries. Numerical

results given in reference 3 also show that theory based upon membrane-prebuckling
analysis can give different results than theory based on the more comprehensive linear-

or nonlinear-bending prebuckling analysis. Dynamic loading may also lower the static

buckling strength of shells.

Until quite recently, most theoretical stability studies of doubly curved shells were

limited to spherical shells subjected to simplified loading conditions and with

simplified edge restraints. The growing use of digital computers for analysis of shell

structures has improved this situation, although not all restrictions have been removed.

For example, available finite-difference computer programs for doubly curved shells
are limited to elastic analysis of orthotropic shells of revolution with constant elastic

stiffness as shown in reference 3, and to isotropic layered construction (ref. 4). These

programs are suitable for use in design of shells of double curvature if complemented
by tests that provide a suitable correlation factor.

The program of reference 3 computes the buckling loads of shells of revolution for

either membrane or nonlinear prebuckling bending stresses resulting from

axisymmetric loadings of constant axial compression and uniform external pressure.

Because of approximations in the theory, buckling loads for shells with rapid changes
of curvature of the meridian or for shells which buckle with a small number of

circumferential waves cannot be obtained accurately. Stiffened shells may be analyzed

if the stiffening elements are so closely spaced that they may be smeared out. Stiffened
shells are generally more efficient and less sensitive to imperfections. The results of the

program may be complemented by studies similar to those of references 5 to 8 which

permit an estimate of the effect of initial imperfections on buckling strength. For shells

which such studies show to be insensitive to imperfections, fewer tests are required to

establish design values.



The programof reference4 permitsthenonlinearanalysisof shellsof revolutionunder
asymmetricsurfaceand thermalloading,but cannotindicatethe possibilityof the
existenceof anothernonlinearstateat somevalueof the load.Themaximumnumber
of meridionalnodepointsis 20andthe maximumnumberof circumferentialFourier
componentsis 10.Boundaryconditionsmaybeclosedat oneor bothends,or maybe
free,fixed,orelasticallyrestrained.Thisprogrammaybeusedto obtainbucklingloads
definedby themaximumloadfor whichequilibriumcanbemaintained.

A numberof programssimilar to that describedin reference3, but whichusea
finite-elementapproach,havebeendevelopedandappearto bepromising.However,
thesearenot documentednor generallyavailable.All the programsfor doublycurved
shells,includingboth finite-differenceandfinite-element,treatonly thosecaseswhere
theshelldoesnot becomeplasticprior to buckling.

Althoughthecapabilityfor stabilityanalysishasincreased,thereisalackof parametric
optimizationstudiesfor problemsof interest.This may well be due to the relative
newnessof most computerprograms.To date,most computerprogramshavebeen
usedfor spotchecksof approximatesolutionsandfor comparisonswith experimental
data.

Availabledesigninformationis summarizedin Section4. To put improvedprocedures
to immediateuse,however,the designeris advisedto bealert to newdevelopmentsin
shell-stabilityanalysis.Therecommendationswill bemodifiedasmoretheoreticaland
testdatabecomeavailable.

3. CRITERIA

3.1 General

Structural components consisting of thin, curved isotropic or composite sheet, with or

without stiffening, shall be so designed that (1) unanticipated buckling resulting in

collapse of the structural components will not occur from the application of ultimate

design loads, and (2) buckling deformation resulting from limit (maximum expected)

loads will not be so large as to impair the function of the structural components or

nearby components, nor so large as to produce undesirable changes in loading.

3.2 Guides for Compliance

Design loads for buckling shall be considered to be any combination of ground or flight

loads, including loads resulting from temperature changes, that cause compressive



inplane stresses(multiplied by the ultimate designfactor) and any load or load
combinationtending to alleviatebuckling (not multiplied by the ultimate design
factor). Bucklingstrengthof thin-walleddoubly curvedshellsshall be definedby
analyseswhichincludesemiempiricalcorrelationfactors.

Representativestructuresshallbe testedunderconditionssimulatingthedesignloads
when:

• Configurationsareshellsof arbitraryshape.

Configurationsareof minimumweight,andcouplingbetweenthevariousmodes
of failureispossible.

• No theoryor correlationfactorexists.

Correlationfactors usedare lessconservativethan thoserecommendedin this
document.

• Cutouts,joints, or otherdesignirregularitiesoccur.

4. RECOMMENDED PRACTICES

4.1 Scope

Procedures for the estimation of buckling loads on doubly curved shells are described

in this section; the source of the procedures and limitations of the procedures are
discussed. Where the recommended practice is suitably defined in all its detail in a
readily available reference, it is merely outlined.

4.2 Isotropic Doubly Curved Shells

Unstiffened isotropic doubly curved shells subjected to various conditions of loadings

are considered in this section. Solutions are limited to spherical, ellipsoidal, and
toroidal shells.

4.2.1 Spherical Shells

4.2.1.1 Spherical Caps Under Uniform External Pressure

The buckling of a spherical cap under uniform external pressure (fig. 1) has been

treated extensively. Theoretical results are presented in references 9 and 10 for

4



axisymmetricsnap-throughof shallowsphericalshellswith edgesthat arerestrained
againsttranslation,but areeitherfreeto rotateor areclamped.Resultsfor asymmetric
buckling aregivenin references11 and 12 for the sameboundaryconditions.The
resultsreportedin thesereferencesarepresentedasthe ratioof thebucklingpressure
Pcr for the sphericalcap and the classicalbuckling pressurePc_for a complete
sphericalshellasa functionof ageometryparameterX:

with

Pcr
- f(x) (1)

Pc_

2

2 (2,Pc_ = ±

[3(1-/.12)] 2

m

X = [12(1 -U 2)]g 2sin7 (3)

where ¢ is half the included angle of the spherical cap (fig. 1).

l , Per

//

Figure 1
Geometryof sphericalcapunderuniform externalpressure

The function fiX) depends on the boundary conditions imposed on the shell.

Most of the available test data apply to spherical shells, and values are lower than

theoretically predicted buckling pressures. The discrepancy between theory and

experiment can be largely attributed to initial deviations from the ideal spherical shape



(refs. 10, 13,and 14)andto differencesbetweenactualandassumededgeconditions
(refs. 15 and 16). Most of the availabledataaresummarizedin reference17;some
other test resultsaregivenin references13 and 18.A lowerboundto the datafor
clampedshellsisgivenby

3.2Pcr _ 0.14+-- (X>2) (4)
Pc£ X2

which is plotted in figure 2. While the X parameterisusedin shallow-shellanalysis,
figure2 maybeappliedto deepshellsaswellasto shallowshells.
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Figure2.
Recommendeddesignbucklingpressureof sphericalcaps

4.2.12 Spherical Caps Under Concentrated Load at the Apex

Spherical caps under concentrated load at the apex (fig. 3) will buckle under certain
conditions. Theoretical results for edges that are free to rotate and to expand in the

direction normal to the axis of revolution and for clamped edges are given in reference

19 for axisymmetric snap-through and in references 7 and 20 for asymmetric buckling.

Experimental results for loads which approximate concentrated loading are described
in references 21 to 25.



Pcr

Figure3
Geometryof sphericalcapunderconcentratedloadat the apex

For shells with unrestrained edges, buckling will not occur if k is less than about 3.8. In

this range of shell geometry, deformation will increase with increasing load until

collapse resulting from plasticity effects occurs. For shells with values of X greater than
3.8, theoretical and experimental results are in good agreement for axisymmetric

snap-through, but disagree when theory indicates that asymmetric buckling should

occur first. In this case, buckling and collapse are apparently not synonymous, and
only collapse loads have been measured. A lower-bound relationship between the

collapse-load parameter and the geometry parameter for the data of references 7, 21,

and 22 for shells with unrestrained edges is given by

Pcr R 1
- ;_ (4 _< X _< 18) (5)

Et 3 24

For spherical caps with clamped edges, theory indicates that buckling will not occur if

k is less than about 8. For values of k between 8 and 9, axisymmetric snap-through will

occur, with the shell continuing to carry increasing load. For larger values of X,

asymmetrical buckling will occur first, but the shell will continue to carry load.

Although imperfections influence the initiation of symmetric or asymmetric buckling,

few measurements have been made of the load at which symmetric or asymmetric

deformations first occur. Experimental results indicate that the collapse loads of

clamped spherical caps loaded over a small area are conservatively estimated by the

loads calculated in reference 7 and shown in figure 4. When the area of loading
becomes large, local buckling may occur at a lower load.
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Figure4
Theoreticalbucklingloadsfor clampedsphericalcapunderconcentratedload

4.2.1.3 Spherical Caps Under Uniform External Pressure

and Concentrated Load at the Apex

Clamped spherical caps subjected to combinations of uniform external pressure and

concentrated load at the apex are discussed in reference 26. The experimental and

theoretical data given there are insufficient, however, to yield conclusive results. A
straight-line interaction curve is recommended:

P p
-- + - 1 (6)
Pcr Pcr

where P is the applied concentrated load, p the applied uniform pressure, Pcr the

critical concentrated load given in Section 4.2.1.2, and Pcr is the critical uniform
external pressure given in Section 4.2.1.1.

4.2.2 Ellipsoidal (Spheroidal) Shells

4.2.2.1 Complete Ellipsoidal Shells Under

Uniform External Pressure

Ellipsoidal shells of revolution subjected to uniform external pressure, as shown in

figure 5, are treated in reference 8. Calculated theoretical results for prolate spheroids



areshownin figures6aand6b. Experimentalresultsgivenin reference27for prolate
sphericalshellswith 4 > A/B ;> 1.5 are in reasonablycloseagreementwith the
theoreticalresultsof reference8. For A/B _>1.5,the theoreticalpressureshouldbe
multiplied by the factor 0.75 to providea lowerboundto the data.Resultsgivenin
reference28 for half of a prolatespheroidalshell(A/B= 3) closedby anendplateare
in goodagreementwith thosefor thecompleteshell.

Theanalysisof reference8 indicatesthat theoreticalresultsfor thin,oblatespheroidal
shellsaresimilarto thosefor asphereof radius

Bz
RA- A (7)

Axis of Axis of

revolution revolution

(a) (b)
Prolate spheroid Oblate spheroid

A>B B>A

Figure5
Geometryof ellipsoidalshells

The data of reference 29 show that experimental results are similar, as well. Thus, the

external buckling pressure for a thin, oblate spheroid may be approximated by the

relationship

2 E- = 0.14 (8)

which is the limit of equation (4) as k becomes large.

4.22.2 Complete Oblate Spheroidal Shells Under Uniform Internal Pressure

When the radius ratio A/B of an oblate spheroid is less than v-_-,internal pressure

produces compressive stresses in the shell, and hence allows instability to occur.
Theoretical values of the critical internal pressures given by the analysis of reference 8
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are shown in figure 7. No experimental results are available, but the study of

imperfection sensitivity of reference 8 indicates that there should be good agreement

between theory and experiment for shells with 0.5 < A/B < 0.7.

Axis of

revolution

A
t

_8_ = looo

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A

B

Figure 7
Theoretical bucklingpressuresof oblate spheroidsunderinternalpressure(/_ = 0.3)

4.2.2.3 Ellipsoidal and Torispherical Bulkheads Under Internal Pressure

Clamped oblate spheroidal (ellipsoidal) bul_eads (fig. 8) may have the ratio of length

of minor and major axes (A/B) less thanV_-without buckling under internal pressure,

provided the thickness exceeds a certain critical value. This problem is investigated in

reference 30. Nonlinear bending theory is used to determine the prebuckling stress

distribution. The regions of stability are shown in figure 9; the calculated variation of

buckling pressure with thickness is shown in figure 10. The theory has not been
verified by experimental results, however, and should be used with caution.

Torispherical end closures, shown in figure 11, are also investigated in reference 30.

Calculations are made for the prebuckling stress distribution in these bulkheads for

ends restrained by cylindrical shells and for buckling pressures for torispherical

12
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Axis of

revolution

Figure 11
Geometryof torisphericalclosure

bulkheads with clamped edge conditions after buckling. The results are shown in figure
12. The experimental results of reference 31 indicate that the theoretically predicted

buckling pressures should be multiplied by a correlation factor _, equal to 0.7.

4.2.3 Toroidal Shells

4.2.3.1 Complete Circular Toroidal Shells Under Uniform

External Pressure

The complete circular toroidal shell under uniform external pressure (fig. 13) has been
investigated and is described in reference 32; the theoretical results obtained are shown

in figure 14.

Experimental results are given in reference 32 for values of b/a of 6.3 and 8, and

indicate good agreement with theory. For values of b/a equal to or greater than 6.3,

15
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the theoretical buckling pressure should be multiplied by a factor of 0.9 to yield design

values. This correction factor has been recommended in reference 1 for long cylindrical

shells which correspond to a value of b/a of oo. For values of b/a less than 6.3, the
buckling pressure should be verified by test.

4.2.3.2 Shallow Bowed.Out Toroidal Segments Under Axial Loading

A bowed-out equatorial toroidal segment under axial tension (fig. 15) will undergo

compressive circumferential stress and will thus be susceptible to buckling. An analysis
for simply supported shallow segments is given in reference 33 and yields the
relationship

N_ 2

/r2D
(r/32--1) 1+fl2¢ + 12-7 i

(9)

1000

z

r
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100 -- a
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0.50
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1.0 (Spherical segments) N
¢ ÷,,¢¢

I
10 100

_Z

1000

Figure15.
Bucklingof bowed-outtoroidalsegmentsunderaxial tension
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where the correlation coefficient 7 has been inserted to account for discrepancies

between theory and experiment. The values obtained by minimizing equation (9) with

respect to 3 are shown in figure 15. The straight-line portion of the curves are
represented by the relationship

N£ 2 4 x/-J-

r?I5 - z? 3,Z (10)

A similar analytical investigation described in reference 34 for clamped truncated

hemispheres in axial tension yields results in close agreement with those for the curve
of figure 15 for r/a = 1.

Experimental results for the truncated hemisphere given in reference 34 indicate that

the correlation coefficient for the curve for r/a equal to 1 is

7 = 0.35 (11)

The same value of the correlation coefficient may be used for other values of r/a.

Some results for bowed-out equatorial toroidal segments under axial compression are

given in reference 35; the equatorial spherical shell segment loaded by its own weight is
treated in reference 36.

4.2.3.3 Shallow Toroidal Segments Under Uniform External Pressure

The term "lateral pressure" designates an external pressure which acts only on the

curved walls of the shell and not on the ends; "hydrostatic pressure" designates an
external pressure that acts on both the curved walls and the ends of the shell.

Expressions for simply supported shallow equatorial toroidal segments subjected to

uniform external lateral or hydrostatic pressure, as shown in figures 16 and 17, are
given in reference 37 as

Pcr r_2 1

rr2D 32 f 121 + 32)2 + _" ,,/2Z2 (12)

19



for lateralpressure,andas

Pcrr£2 1 12 "rZZZ +r__2
- 1 r 1 (1 +_32)2 + --

_r2D /32 1 T-_a +

(13)

for hydrostatic pressure. In equations (12) and (13), the upper sign refers to segments
of type (a) of figure 18, while the lower sign refers to segments of type (b) of figure

18. The correlation coefficient _ has been introduced to account for discrepancies

between theory and experiment. The results of minimizing the buckling pressure with

respect to the circumferential wavelength parameter/3 are shown in figures 16 and 17.

The straight-line portions of the curve for the shells of type (a) of figure 18 are
represented by the relationships

Pcr r£2 4x/3 r
_r2D 1r2 a "),Z (lateral pressure) (14a)

Pcr r£/ 8x/-3 r

7r2D 2_r a
a

-yZ (hydrostatic pressure) (14b)

No experimental data are available except for the cylindrical shell for which a
correlation factor of

3' = 0.56 (15)

was recommended in reference 1. The same correlation factor can be used for shells

with r/a near zero, but should be used with caution for shells of type (b) with values of

r/a near unity. For shells of type (a) with values of r/a near unity, the shell can be

conservatively treated as a sphere, or the buckling pressure should be verified by test.

4.3 Orthotropic Doubly Curved Shells

The term "orthotropic doubly curved shells" covers a wide variety of shells. In its

strictest sense, it denotes single- or multiple-layered shells made of orthotropic

materials. In this monograph, the directions of the axes of orthotropy for shells of
revolution are assumed to coincide with the meridional and circumferential directions

2O
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of the shell. The term also denotes types of stiffened shells in which the stiffener

spacing is small enough for the shell to be approximated by a fictitious sheet whose

orthotropic bending and extensional properties include those of the individual

stiffening elements averaged out over representative widths or areas.

The behavior of the various types of orthotropic shells may be described by a single

theory, the governing equations of which are equations of equilibrium for the buckled

structure, and relationships between force and moment resultants and extensional and

bending strains. The matrix equation relating the inplane forces and bending moments

to the inplane strains and curvatures for shells of revolution with axes of orthotropy in

the meridional and circumferential directions can be written in the following form:

N1

N2

N12

M 1

M2

M12

-Cll C12 0 C14 C15 0

C,2 C22 0 C24 C2s 0

0 0 C33 0 0 0

C14 C24 0 C44 C45 0

C is C2s 0 C4s Css 0

0 0 0 0 0 C66

62

_z12

q

K2

fi_12

(16)
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Zero entriesin the abovematrix generallyrefer to couplingtermsfor layerswhose
individualprincipalaxesof stiffnessesarenot alignedin meridionalandcircumferential
directions.The valuesof the variouselasticconstantsusedin determiningbuckling
loads of orthotropic shellsare different for different typesof construction.Some
widelyusedexpressionsaregivenin reference3.

The theory for single-layeredshellsof orthotropic materialis similar to that for
isotropicshellssincethe couplingtermsC_4,C_s, C24,andCzs maybesetequalto
zero.For stiffeneddoublycurvedshellsor for shellshavingmultipleorthotropiclayers,
this is not generallypossibleandit isshownin references38and39 that theneglectof
couplingtermscanleadto seriouserrors.For example,the inclusionof couplingterms
yields a significantdifferencein theoreticalresultsfor stiffenedshallowspherical-
domeconfigurationshavingstiffenerson theinnersurfaceor on theoutersurface.The
differencevanisheswhencouplingisneglected.

Very little theoreticalor experimentaldataareavailablefor orthotropicandstiffened
doubly curvedshells.Generalinstability loadsof pressurizedshallowsphericaldomes
with meridionalstiffenersaredeterminedin reference40, anda semiempiricaldesign
formula is given in reference41 for stiffenedsphericalcaps.This formula closely
approximatesthe test data given in reference41. Buckling loads are given for
grid-stiffenedsphericaldomesin reference42; references40 to 42 do not includethe
effectof stiffenereccentricity.

Stiffener-eccentricityeffectsareinvestigatedin reference38 for grid-stiffenedspherical
domes.Eccentricallystiffenedshallowequatorialtoroidal shellsunderaxial loadand
uniform pressureare investigatedin reference43. Reference3 discussesthe
developmentof a buckling computer programthat includescouplingas well as
nonlinearprebucklingbendingeffectsfor orthotropicshellsof revolution.(Thecards
and a computerlisting for this programareavailablefrom COSMIC,Universityof
Georgia,Athens,Georgia.)Numericalresultsobtainedfrom this program,givenin
reference3, werein goodagreementwith selectedexperimentalresults.Thecomputer
programcan be usedto determinethe bucklingload of the following orthotropic
shells:

• Shellswith ringandstringerstiffening.

• Shellswith skewstiffeners.

• Fiber-reinforced(layered)shells.

• Layeredshells(isotropicor orthotropic).

• Corrugatedring-stiffenedshells.

• Shellswith onecorrugatedandonesmoothskin(with rings).

Boundaryconditionsmay be closedat one or both ends,or may be free,fixed, or
elasticallyrestrained.Edgeringsarepermittedon theboundary.
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This computerprogramcanbeusedin conjunctionwith experimentallydetermined
correlationfactorsto obtain bucklingloadsfor orthotropicshellsof revolution.The
limitationsof theprogramaregivenin reference3.

The design recommendationsgiven below are limited to sphericaldomes; the
recommendationsshouldalsobeverifiedby test,wherefeasible.The possibilityof
localbucklingof theshellbetweenstiffeningelementsshouldbechecked.

The investigationof reference42 gives the theoretical buckling pressureof a
grid-stiffenedsphericaldomeunderuniform externalpressure.Thisanalysisassumes
that the sphericaldomeis "deep" and that it containsmanybucklewavelengths.In
this case,the boundaryconditionshavelittle effecton thebucklingload.Eccentricity
effectsareneglected.Experimentalresultsgivenin reference29 tend to supportthe
assumptionsof theanalysis.

If the analysisof reference42 is extended to the materially or geometrically
orthotropicshell,thenthehydrostaticbucklingpressurecanbeexpressedas

pR3
1

C44¢/i 2

- 4",/
_1 (C45 -I- C66) -t- C55 _1

+ 2 ---C-__4 --_ C744. ]
C= - C22 l

/
(17)

where

C22R2 ( C122

_2 = 2C33 (18b)

C,2 C,2 %37]C,,C=

The constants Cn , C12 , C22 , C33 , C44 , C45 , C55 , and C66 are defined in reference 3
for the various materially and geometrically orthotropic materials. Equation (1 7) does
not include the effect of stiffener eccentricity since the coupling terms C14, Cls , C24,
and C2s in equation (16) have been neglected. Only limited experimental data exist for
geometrically or materially orthotropic spherical domes subjected to hydrostatic
pressure (refs. 29 and 41). In the absence of more extensive test results, it is
recommended that the isotropic spherical cap reduction factor shown in equation (4)
also be used for the orthotropic spherical shell. The correlation factor is given by

3.2

"l' = 0.14 + X--5- (19)
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This equation is plotted in figure 2. The effective shell thicknessto be usedin
obtaining3,is recommendedas

_] C44Csst = CII C22

(20)

4.4 Isotropic Sandwich Doubly Curved Shells

The term "isotropic sandwich" designates a layered construction formed by bonding
two thin isotropic facings to a thick core. Generally, the thin isotropic facings provide
nearly all the bending rigidity of the construction; the core separates the facings and
transmits shear so that the facings bend about a common neutral axis.

Sandwich construction should be checked for two possible modes of instability failure:

(1) general instability failure where the shell fails with core and facings acting together,
and (2) local instability failure taking the form of dimpling of the faces or wrinkling of

the faces (fig. 19).
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Figure 19

Typesof failure of sandwichshells
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4.4.1 General Failure

If the sandwich core is resistant to transverse shear so that its shear stiffness can be

assumed to be infinite, the sandwich shell can be treated as an equivalent isotropic

shell. For unequal thickness facings, the equivalent isotropic material thickness and
modulus of elasticity are then given by

}- = x/i-2 h (21a)

_E, t, EN t2
_E---_ + _EI tl

= Eltl _+ E2t2 (21b)
t

and for equal-thickness facings with the same modulus of elasticity, by

T = x/_'h (22a)

2Etf
(22b)

These equivalent properties can be used in conjunction with the recommended

practices in Section 4.2 and with the computer program of reference 3 to analyze
isotropic sandwich doubly curved shells.

Only one theoretical investigation which includes shear flexibility is available.

Reference 44 treats the buckling of a sandwich sphere comprised of a core layer of
low-modulus material and two equal facing layers of high-modulus material. Because

there are insufficient theoretical and experimental data, no design recommendations
can be given for this case.

4.42 Local Failure

Modes of failure other than overall buckling are possible. For honeycomb-core
sandwich shells, failure may occur because of core crushing, intracell buckling, and face

wrinkling. The use of relatively heavy cores (6 > 0.03) will usually insure against core
crushing. Lighter cores may prove to be justified as data become available. Procedures

for the determination of intracell buckling and face-wrinkling loads are given in
reference 45.
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SYMBOLS

A,B

D

E

E1 ,E2

MI ,M2 ,M1z
N

NI ,N2 ,N 12
n
P

Pcr

P

Pc£
Pcr
R

RA

Rc
Rt
r

t

tf

radius of curvature of circular toroidal-shell cross section (See fig. 13.)
distance from center of circular cross section of circular toroidal-shell

cross section to axis of revolution (See fig. 13.)

lengths of semiaxes of ellipsoidal shells
coefficients of constitutive equations [See eq. (16).]

monocoque shell-wall flexural stiffness, Eta
12( l-/a 2 )

Young's modulus

equivalent Young's modulus for isotropic sandwich shells

Young's moduli of the 1- and 2-face sheets, respectively, for isotropic
sandwich shells

distance between middle surfaces of the top and bottom face sheets for

isotropic sandwich shells

length of toroidal-shell segment (See fig. 18.)

moment resultants per unit of middle surface length

axial tension force per unit circumference applied to a toroidal segment

(See fig. 15.)

force resultants per unit of middle surface length
number of buckle waves in the circumferential direction

concentrated load at apex of spherical cap

critical concentrated load at apex of spherical cap
uniform pressure

classical uniform buckling pressure for a complete spherical shell
critical uniform pressure

radius of spherical shell
B 2

effective radius of a thin-walled oblate spheroid,

maximum radius of torispherical shell (See fig. 11.)

toroidal radius of torispherical shell (See fig. 11.)
radius of equator of toroidal shell segment (See fig. 18.)

thickness of single-layered shell

equivalent constant thickness for isotropic sandwich shells [See eq.
(21).1

face thickness of sandwich shell having equal-thickness faces
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tl ,t2

Z

q_

8

ffl _2 _ 512

KI _K2 _12

k

/a

_0

face-sheet thicknesses for sandwich construction having faces of

unequal thickness
_2

curvature parameter of toroidal-shell segment, q/'(1--# 2) --
rt

buckle wavelength parameter, n____._
7rr

correlation factor to account for difference between classical theory
and recommended lower-bound instabiliy loads

ratio of core density of honeycomb sandwich to density of face sheet
reference-surface strains

reference-surface curvature changes

spherical-cap geometry parameter [See eq. (3).]
Poisson's ratio

half the included angle of spherical cap (See fig. 1.)

half the included angle of spherical cap portion of torispherical closure

(See fig. 11.)
[See eq. (18).]
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NASA SPACE VEHICLE DESIGN CRITERIA

MONOGRAPHS ISSUED TO DATE

SP-8001

SP-8002

SP-8003

SP-8004

SP-8005

SP-8006

SP-8007

SP-8008

SP-8009

SP-8010

SP-8011

SP-8012

SP-8013

SP-8014

SP-8015

SP-8016

SP-8017

SP-8_18

SP-8019

SP-8020

SP-8021

SP-8023

SP-8024

SP-8029

SP-8031

(Structures)

(Structures)

(Structures)

(Structures)

(Environment)

(Structures)

(Structures)

(Structures)

(Structures)

(Environment)

(Environment)

(Structures)

(Enviromnent)

(Structures)

(Guidance
and Control)

(Guidance
and Control)

(Environment)

(Guidance
and Control)

(Structures)

(Environment)

(Environment)

(Environment)

(Guidance
and Control)

(Structures)

(Structures)

Buffeting During Launch and Exit, May 1964

Flight-Loads Measurements During Launch and Exit,
December 1964

Flutter, Buzz, and Divergence, July 1964

Panel Flutter, May 1965

Solar Electromagnetic Radiation, June 1965

Local Steady Aerodynamic Loads During Launch and
Exit, May 1965

Buckling of Thin-Walled Circular Cylinders, September
1965 - Revised August 1968

Prelaunch Ground Wind Loads, November 1965

Propellant Slosh Loads, August 1968

Models of Mars Atmosphere (1967), May 1968

Models of Venus Atmosphere (1968), December 1968

Natural Vibration Modal Analysis, September 1968

Meteoroid Environment Model - 1969 [Near Earth
to Lunar Surface], March 1969

Entry Thermal Protection, August 1968

Guidance and Navigation for Entry Vehicles,
November 1968

Effects of Structural Flexibility on Spacecraft Control
Systems, April 1969

Magnetic Fields - Earth and Extraterrestrial, March
1969

Spacecraft Magnetic Torques, March 1969

Buckling of Thin-Walled Truncated Cones, September
1968

Mars Surface Models [1968], May 1969

Models of Earth's Atmosphere (120 to 1000 kin),
May 1969

Lunar Surface Models, May 1969

Spacecraft Gravitational Torques, May 1969

Aerodynamic and Rocket-Exhaust
Launch and Ascent, May 1969

Slosh Suppression, May 1969

Heating During
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